BglJ-RcsB heterodimers relieve repression of the Escherichia coli bgl operon by H-NS.
نویسندگان
چکیده
RcsB is the response regulator of the complex Rcs two-component system, which senses perturbations in the outer membrane and peptidoglycan layer. BglJ is a transcriptional regulator whose constitutive expression causes activation of the H-NS- and StpA-repressed bgl (aryl-β,D-glucoside) operon in Escherichia coli. RcsB and BglJ both belong to the LuxR-type family of transcriptional regulators with a characteristic C-terminal DNA-binding domain. Here, we show that BglJ and RcsB interact and form heterodimers that presumably bind upstream of the bgl promoter, as suggested by mutation of a sequence motif related to the consensus sequence for RcsA-RcsB heterodimers. Heterodimerization of BglJ-RcsB and relief of H-NS-mediated repression of bgl by BglJ-RcsB are apparently independent of RcsB phosphorylation. In addition, we show that LeuO, a pleiotropic LysR-type transcriptional regulator, likewise binds to the bgl upstream regulatory region and relieves repression of bgl independently of BglJ-RcsB. Thus, LeuO can affect bgl directly, as shown here, and indirectly by activating the H-NS-repressed yjjQ-bglJ operon, as shown previously. Taken together, heterodimer formation of RcsB and BglJ expands the role of the Rcs two-component system and the network of regulators affecting the bgl promoter.
منابع مشابه
Transcriptional regulation by BglJ–RcsB, a pleiotropic heteromeric activator in Escherichia coli
The bacterial Rcs phosphorelay signals perturbations of the bacterial cell envelope to its response regulator RcsB, which regulates transcription of multiple loci related to motility, biofilm formation and various stress responses. RcsB is unique, as its set of target loci is modulated by interaction with auxiliary regulators including BglJ. The BglJ-RcsB heteromer is known to activate the HNS ...
متن کاملFate of the H-NS–Repressed bgl Operon in Evolution of Escherichia coli
In the enterobacterial species Escherichia coli and Salmonella enterica, expression of horizontally acquired genes with a higher than average AT content is repressed by the nucleoid-associated protein H-NS. A classical example of an H-NS-repressed locus is the bgl (aryl-beta,D-glucoside) operon of E. coli. This locus is "cryptic," as no laboratory growth conditions are known to relieve repressi...
متن کاملCorrelation of Antagonistic Regulation of leuO Transcription with the Cellular Levels of BglJ-RcsB and LeuO in Escherichia coli
LeuO is a conserved and pleiotropic transcription regulator, antagonist of the nucleoid-associated silencer protein H-NS, and important for pathogenicity and multidrug resistance in Enterobacteriaceae. Regulation of transcription of the leuO gene is complex. It is silenced by H-NS and its paralog StpA, and it is autoregulated. In addition, in Escherichia coli leuO is antagonistically regulated ...
متن کاملThe StpA protein functions as a molecular adapter to mediate repression of the bgl operon by truncated H-NS in Escherichia coli.
The mechanism of repression of the beta-glucoside utilization (bgl) operon of Escherichia coli by a carboxy-terminally truncated derivative of the nucleoid-associated protein H-NS which is defective in DNA binding was investigated. The DNA-binding function of the H-NS-like protein StpA was found to be necessary for repression, which is consistent with a role for StpA as a DNA-binding adapter fo...
متن کاملModeling feedback loops in the H-NS-mediated regulation of the Escherichia coli bgl operon.
The histone-like nucleoid-associated protein H-NS is a global transcriptional repressor that controls approximately 5% of all genes in Escherichia coli and other enterobacteria. H-NS binds to DNA with low specificity. Nonetheless, repression of some loci is exceptionally specific. Experimental data for the E. coli bgl operon suggest that highly specific repression is caused by regulatory feedba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 192 24 شماره
صفحات -
تاریخ انتشار 2010